Package 'benchmarkme'

Title: Crowd Sourced System Benchmarks
Description: Benchmark your CPU and compare against other CPUs. Also provides functions for obtaining system specifications, such as RAM, CPU type, and R version.
Authors: Colin Gillespie [aut, cre]
Maintainer: Colin Gillespie <[email protected]>
License: GPL-2 | GPL-3
Version: 1.0.8
Built: 2025-01-01 04:36:40 UTC
Source: https://github.com/csgillespie/benchmarkme

Help Index


The benchmarkme package

Description

Benchmark your CPU and compare against other CPUs. Also provides functions for obtaining system specifications, such as RAM, CPU type, and R version.

Author(s)

[email protected]

See Also

https://github.com/csgillespie/benchmarkme

Examples

## Benchmark your system and compare
## Not run: 
res = benchmark_std()
upload_results(res)
plot(res)

## End(Not run)

IO benchmarks

Description

Benchmarking reading and writing a csv file (containing random numbers). The tests are essentially write.csv(x) and read.csv(...) where x is a data frame. Of sizeMB.

Usage

benchmark_io(
  runs = 3,
  size = c(5, 50),
  tmpdir = tempdir(),
  verbose = TRUE,
  cores = 0L
)

bm_read(runs = 3, size = c(5, 50), tmpdir = tempdir(), verbose = TRUE)

bm_write(runs = 3, size = c(5, 50), tmpdir = tempdir(), verbose = TRUE)

Arguments

runs

Number of times to run the test. Default 3.

size

a number specifying the approximate size of the generated csv. Must be one of 5 or 50

tmpdir

a non-empty character vector giving the directory name. Default tempdir()

verbose

Default TRUE.

cores

Default 0 (serial). When cores > 0, the benchmark is run in parallel.


Run standard benchmarks

Description

This function runs a set of standard benchmarks, which should be suitable for most machines. It runs a collection of matrix benchmark functions

  • benchmark_prog

  • benchmark_matrix_cal

  • benchmark_matrix_fun

To view the list of benchmarks, see get_available_benchmarks.

Usage

benchmark_std(runs = 3, verbose = TRUE, cores = 0L)

Arguments

runs

Number of times to run the test. Default 3.

verbose

Default TRUE.

cores

Default 0 (serial). When cores > 0, the benchmark is run in parallel.

Details

Setting cores equal to 1 is useful for assessing the impact of the parallel computing overhead.

Examples

## Benchmark your system
## Not run: 
res = benchmark_std(3)

## Plot results
plot(res)

## End(Not run)

Matrix calculation benchmarks

Description

A collection of matrix benchmark functions aimed at assessing the calculation speed.

  • Creation, transp., deformation of a 2500x2500 matrix.

  • 2500x2500 normal distributed random matrix ^1000.

  • Sorting of 7,000,000 random values.

  • 2500x2500 cross-product matrix (b = a' * a)

  • Linear regr. over a 3000x3000 matrix.

These benchmarks have been developed by many authors. See http://r.research.att.com/benchmarks/R-benchmark-25.R for a complete history. The function benchmark_matrix_cal() runs the five bm functions.

Usage

bm_matrix_cal_manip(runs = 3, verbose = TRUE)

bm_matrix_cal_power(runs = 3, verbose = TRUE)

bm_matrix_cal_sort(runs = 3, verbose = TRUE)

bm_matrix_cal_cross_product(runs = 3, verbose = TRUE)

bm_matrix_cal_lm(runs = 3, verbose = TRUE)

benchmark_matrix_cal(runs = 3, verbose = TRUE, cores = 0L)

Arguments

runs

Number of times to run the test. Default 3.

verbose

Default TRUE.

cores

Default 0 (serial). When cores > 0, the benchmark is run in parallel.

References

http://r.research.att.com/benchmarks/R-benchmark-25.R


Matrix function benchmarks

Description

A collection of matrix benchmark functions

  • FFT over 2,500,000 random values.

  • Eigenvalues of a 640x640 random matrix.

  • Determinant of a 2500x2500 random matrix.

  • Cholesky decomposition of a 3000x3000 matrix.

  • Inverse of a 1600x1600 random matrix.

These benchmarks have been developed by many authors. See http://r.research.att.com/benchmarks/R-benchmark-25.R for a complete history. The function benchmark_matrix_fun() runs the five bm functions.

Usage

bm_matrix_fun_fft(runs = 3, verbose = TRUE)

bm_matrix_fun_eigen(runs = 3, verbose = TRUE)

bm_matrix_fun_determinant(runs = 3, verbose = TRUE)

bm_matrix_fun_cholesky(runs = 3, verbose = TRUE)

bm_matrix_fun_inverse(runs = 3, verbose = TRUE)

benchmark_matrix_fun(runs = 3, verbose = TRUE, cores = 0L)

Arguments

runs

Number of times to run the test. Default 3.

verbose

Default TRUE.

cores

Default 0 (serial). When cores > 0, the benchmark is run in parallel.

References

http://r.research.att.com/benchmarks/R-benchmark-25.R


Benchmark in parallel

Description

This function runs benchmarks in parallel to test multithreading

Usage

bm_parallel(bm, runs, verbose, cores, ...)

Arguments

bm

character name of benchmark function to run from get_available_benchmarks

runs

number of runs of benchmark to make

verbose

display messages during benchmarking

cores

number of cores to benchmark. If cores is specified, the benchmark is also run for cores = 1 to allow for normalisation.

...

additional arguments to pass to bm

Examples

## Not run: 
bm_parallel("bm_matrix_cal_manip", runs = 3, verbose = TRUE, cores = 2)
bm = c("bm_matrix_cal_manip","bm_matrix_cal_power", "bm_matrix_cal_sort",
       "bm_matrix_cal_cross_product", "bm_matrix_cal_lm")
results = lapply(bm, bm_parallel,
                runs = 5, verbose = TRUE, cores = 2L)

## End(Not run)

Programming benchmarks

Description

A collection of matrix programming benchmark functions

  • 3,500,000 Fibonacci numbers calculation (vector calc).

  • Creation of a 3500x3500 Hilbert matrix (matrix calc).

  • Grand common divisors of 1,000,000 pairs (recursion).

  • Creation of a 1600x1600 Toeplitz matrix (loops).

  • Escoufier's method on a 60x60 matrix (mixed).

These benchmarks have been developed by many authors. See http://r.research.att.com/benchmarks/R-benchmark-25.R for a complete history. The function benchmark_prog() runs the five bm functions.

Usage

bm_prog_fib(runs = 3, verbose = TRUE)

bm_prog_hilbert(runs = 3, verbose = TRUE)

bm_prog_gcd(runs = 3, verbose = TRUE)

bm_prog_toeplitz(runs = 3, verbose = TRUE)

bm_prog_escoufier(runs = 3, verbose = TRUE)

benchmark_prog(runs = 3, verbose = TRUE, cores = 0L)

Arguments

runs

Number of times to run the test. Default 3.

verbose

Default TRUE.

cores

Default 0 (serial). When cores > 0, the benchmark is run in parallel.


Upload benchmark results

Description

This function uploads the benchmarking results. These results will then be incorparated in future versions of the package.

Usage

create_bundle(results, filename = NULL, args = NULL, id_prefix = "")

upload_results(
  results,
  url = "http://www.mas.ncl.ac.uk/~ncsg3/form.php",
  args = NULL,
  id_prefix = ""
)

Arguments

results

Benchmark results. Probably obtained from benchmark_std() or benchmark_io().

filename

default NULL. A character vector of where to store the results (in an .rds file). If NULL, results are not saved.

args

Default NULL. A list of arguments to be passed to get_sys_details().

id_prefix

Character string to prefix the benchmark id. Makes it easier to retrieve past results.

url

The location of where to upload the results.

Examples

## Run benchmarks
## Not run: 
res = benchmark_std()
upload_results(res)

## End(Not run)

Available benchmarks

Description

The function returns the available benchmarks

Usage

get_available_benchmarks()

Examples

get_available_benchmarks()

Byte compiler status

Description

Attempts to detect if byte compiling or JIT has been used on the package.

Usage

get_byte_compiler()

Details

For R 3.5.0 all packages are byte compiled. Before 3.5.0 it was messy. Sometimes the user would turn it on via JIT, or ByteCompiling the package. On top of that R 3.4.X(?) was byte compiled, but R 3.4.Y(?) was, not fully optimised!!! What this means is don't trust historical results!

Value

An integer indicating if byte compiling has been turn on. See ?compiler for details.

Examples

## Detect if you use byte optimization
get_byte_compiler()

CPU Description

Description

Attempt to extract the CPU model on the current host. This is OS specific:

  • Linux: /proc/cpuinfo

  • Apple: sysctl -n

  • Solaris: Not implemented.

  • Windows: wmic cpu

A value of NA is return if it isn't possible to obtain the CPU.

Usage

get_cpu()

Examples

## Return the machine CPU
get_cpu()

Get BLAS and LAPACK libraries Extract the the blas/lapack from sessionInfo()

Description

Get BLAS and LAPACK libraries Extract the the blas/lapack from sessionInfo()

Usage

get_linear_algebra()

Platform information

Description

This function just returns the outpu of .Platform

Usage

get_platform_info()

R version

Description

Returns unclass(R.version)

Usage

get_r_version()

Get the amount of RAM

Description

Attempt to extract the amount of RAM on the current machine. This is OS specific:

  • Linux: proc/meminfo

  • Apple: system_profiler -detailLevel mini

  • Windows: First tries grep MemTotal /proc/meminfo then falls back to wmic MemoryChip get Capacity

  • Solaris: prtconf

A value of NA is return if it isn't possible to determine the amount of RAM.

Usage

get_ram()

References

The print.bytes function was taken from the pryr package.

Examples

## Return (and pretty print) the amount of RAM
get_ram()
## Display using iec units
print(get_ram(), unit_system = "iec")

General system information

Description

The get_sys_info returns general system level information as a list. The function parameters control the information to upload. If a parameter is set to FALSE, an NA is uploaded instead. Each element of the list is contains the output from:

  • Sys.info();

  • get_platform_info();

  • get_r_version();

  • get_ram();

  • get_cpu();

  • get_byte_compiler();

  • get_linear_algebra();

  • Sys.getlocale()

  • installed.packages();

  • .Machine

  • The package version number;

  • Unique ID - used to extract results;

  • The current date.

Usage

get_sys_details(
  sys_info = TRUE,
  platform_info = TRUE,
  r_version = TRUE,
  ram = TRUE,
  cpu = TRUE,
  byte_compiler = TRUE,
  linear_algebra = TRUE,
  locale = TRUE,
  installed_packages = TRUE,
  machine = TRUE
)

Arguments

sys_info

Default TRUE.

platform_info

Default TRUE.

r_version

Default TRUE.

ram

Default TRUE.

cpu

Default TRUE.

byte_compiler

Default TRUE.

linear_algebra

Default TRUE.

locale

Default TRUE

installed_packages

Default TRUE.

machine

Default TRUE

Value

A list

Examples

## Returns all details about your machine
get_sys_details(cpu = FALSE, installed_packages = FALSE, ram = FALSE)

Compare results to past tests

Description

Plotting

Usage

## S3 method for class 'ben_results'
plot(
  x,
  test_group = unique(x$test_group),
  blas_optimize = is_blas_optimize(x),
  log = "y",
  ...
)

Arguments

x

The output from a benchmark_* call.

test_group

Default unique(x$test_group). The default behaviour is select the groups from your benchmark results.

blas_optimize

Logical. Default The default behaviour is to compare your results with results that use the same blas_optimize setting. To use all results, set to NULL.

log

By default the y axis is plotted on the log scale. To change, set the the argument equal to the empty parameter string, "".

...

Arguments to be passed to other downstream methods.

Examples

data(sample_results)
plot(sample_results, blas_optimize = NULL)

Benchmark rankings

Description

Comparison with past results.

Usage

rank_results(
  results,
  blas_optimize = is_blas_optimize(results),
  verbose = TRUE
)

Arguments

results

Benchmark results. Probably obtained from benchmark_std() or benchmark_io().

blas_optimize

Logical. Default The default behaviour is to compare your results with results that use the same blas_optimize setting. To use all results, set to NULL.

verbose

Default TRUE.


Sample benchmarking results

Description

Sample benchmark results. Used in the vignette.

Format

A data frame